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(2) A GOAL IMAGE 602

PROCESS THE GOAL IMAGE USING THE GOAL IMAGE ENCODER TO GENERATE A LATENT
SPACE REPRESENTATION OF THE GOAL IMAGE 604

PROCESS (1) AN INITIAL IMAGE FRAME OF THE IMITATION TRAJECTORY AND (2) THE
LATENT SPACE REPRESENTATION OF THE GOAL IMAGE, USING A GOAL-CONDITIONED
POLICY NETWORK, TO GENERATE A CANDIDATE OUTPUT 606
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DETERMINE A GOAL IMAGE LOSS BASED ON (1) THE CANDIDATE OUTPUT AND (2) AT LEAST
A PORTION OF THE IMITATION TRAJECTORY 608

!

SELECT A NATURAL LANGUAGE (NL) INSTRUCTION TRAINING INSTANCE INCLUDING (1) AN
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DETERMINE A NL INSTRUCTION LOSS BASED ON (1) THE ADDITIONAL CANDIDATE QUTPUT
AND (2) AT LEAST A PORTION OF THE ADDITIONAL IMITATION TRAJECTORY 616
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GENERATE A GOAL-CONDITIONED LOSS BASED ON (1) THE IMAGE GOAL LOSS AND (2) THE
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UPDATE ONE OR MORE PORTIONS OF THE GOAL-CONDITIONED POLICY NETWORK, THE
GOAL IMAGE ENCODER, AND/OR THE NL INSTRUCTION ENCODER BASED ON THE GOAL-
CONDITIONED LOSS 620
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multiple imitation datasets,
each with a different task description
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Training Task Multi-18 Chain-4 Success
Method Input i o condi- Success (925
tioning (18 tasks) long-horizon tasks)
LangBC pixels predefined demos text 20.0% +3.0 7.1% £1.5
Restricted LangLfP pixels | unstructured demos text 47.1% +2.0 25.0% +2.0
LfP pixels | unstructured demos image | 66.4% +2.2 53.0% +5.0
LangLfP (ours) pixels | unstructured demos text 68.6% +1.7 52.1% +2.0
TransferLangLLfP (ours) | pixels | unstructured demos text 741% +1.5 61.8% +1.1
LangBC states predefined demos text 38.5% +6.3 13.9% +1.4
Restricted LangLfP states | unstructured demos text 88.0% £1.4 64.2% 1.5
LangLtP (ours) states unstructured demos text 88.5% £2.9 63.2% £0.9
TransferLangLfP (ours) | states | unstructured demos text 90.5% +0.8 71.8% +1.6

TABLE I: Human language conditioned visual manipulation experiments
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