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「AI特許紹介」シリーズは、注目すべき AI特許のポイントを紹介します。熾烈な競

争となっている第４次産業革命下では AI 技術がキーとなり、この AI 技術・ソリュー

ションを特許として適切に権利化しておくことが重要であることは言うまでもありま

せん。 

 

 AI技術は Google, Microsoft, Amazonを始めとした ITプラットフォーマ、研究機関

及び大学から毎週のように新たな手法が提案されており、また AI 技術を活用した新た

なソリューションも次々とリリースされています。 

 

 本稿では米国先進 IT 企業を中心に、これらの企業から出願された AI 特許に記載さ

れた AIテクノロジー・ソリューションのポイントをわかりやすく解説致します。 

 

1.概要 

特許出願人 DeepMind Technologies 

出願日 2018年 6月 11日 

公開日  2020年 6月 11日 

公開番号 US20200184316 

発明の名称 入力データ項目の離散潜在表現の生成 

 

 316 特許は、教師無し学習の一種である VAE(Variational AutoEncoder)を改良した

VQ-VAE（Vector Quantised ベクトル量子化-VAE）に関し、エンコーダネットワーク

に、連続コードではなく離散コードを出力させ、また事前確率を静的ではなく学習させ

ることで、VAEに散見される事後崩壊（posterior collapse）を防止し、高品質の画像及

び音声を生成するものである。 

 

 

2.特許内容の説明 

図 1Aは、エンコーダシステム 100およびデコーダシステム 150を示す。 
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エンコーダシステム 100 は、入力データ項目 102 を受信し、入力データ項目 102 を

エンコードして、入力データ項目 102 の離散潜在表現 122 を生成する。潜在表現 122

は、潜在空間における入力データ項目 102の特徴を識別する数値表現である。デコーダ

システム 150 は、入力データ項目 150 の離散潜在表現 122 を受け取り、入力データ項

目 102の再構成である再構成データ項目 172を生成する。 

 

エンコーダシステム 100は、エンコーダニューラルネットワーク 110、エンコーダサ

ブシステム 120、および潜在埋め込みベクトルのセットを格納する潜在埋め込みベクト
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ルメモリ 130を含む。 

 

エンコーダニューラルネットワーク 110 は、入力データ項目 102 を処理して、一連

のパラメータ (エンコーダネットワークパラメータ) に従って入力データ項目 102 の

エンコーダ出力 112 を生成するようにトレーニングされたニューラルネットワークで

ある。エンコーダ出力 112は、１つまたは複数の潜在変数のそれぞれについて、それぞ

れのエンコードされたベクトルを含む。 

 

入力データ項目 102が画像である場合、各潜在変数は、二次元特徴マップ内の別個の

空間位置に対応する。すなわち、エンコーダ出力 112は、２次元特徴マップ内の各空間

位置に対するそれぞれのエンコードされたベクトルを含み、各空間位置は異なる潜在変

数に対応する。これらの場合、エンコーダニューラルネットワーク 110は、画像を処理

してエンコーダ出力を生成する畳み込みニューラルネットワークとすることができる。 

 

入力データ項目 102がオーディオデータ、例えば生のオーディオ波形である場合、各

潜在変数は、シーケンス内の別個の位置に対応する。すなわち、エンコーダニューラル

ネットワーク 110 は、エンコードされたベクトルのシーケンスとしてエンコーダ出力

112を生成し、シーケンス内の各位置は異なる潜在変数に対応する。これらの場合、エ

ンコーダニューラルネットワーク 110 は、オーディオデータのシーケンスを受け取り、

エンコードされたベクトルのシーケンスを生成する拡張畳み込みニューラルネットワ

ークである。 

 

連続潜在表現を生成するシステムとは異なり、エンコーダ出力を入力データ項目 102

の表現として使用する代わりに、エンコーダサブシステム 120は、エンコーダ出力 112

およびメモリ 130 内の潜在埋め込みベクトルを使用して、入力データ項目 102 の離散

潜在表現 122を生成する。 

 

特に、潜在変数ごとに、エンコーダサブシステム 120 は、メモリ 130 内の潜在埋め

込みベクトルのセットから、潜在変数のエンコードされたベクトルに最も近い潜在埋め

込みベクトルを決定する。例えば、サブシステム 120は、潜在埋め込みベクトルのセッ

トに対する最近傍ルックアップまたは任意の他の適切な距離メトリックを使用して、所

与のエンコードされたベクトルに最も近い潜在埋め込みベクトルを決定する。次に、サ

ブシステム 120 は、離散潜在表現 122 に、潜在変数ごとに、潜在変数のエンコードさ

れたベクトルに最も近い潜在埋め込みベクトルを識別するデータを含める。 

 

エンコーダシステム 120 は、離散潜在表現 122 を、デコーダシステム 150 が離散潜
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在表現にアクセスできるように、コンピュータによってアクセス可能なローカルメモリ

に格納する。 

 

デコーダシステム 150 は、デコーダサブシステム 160 およびデコーダニューラルネ

ットワーク 170 を含む。デコーダサブシステム 160 は、離散潜在表現 122 を受信し、

潜在埋め込みメモリ 152 内の潜在埋め込みベクトルを使用してデコーダ入力 162 を生

成する。 

 

潜在埋め込みメモリ 152 は、通常、潜在埋め込みメモリ 130 と同じ潜在埋め込みベ

クトルを格納する。デコーダ入力 162 は、潜在変数ごとに、離散潜在表現 122 内の潜

在変数について識別される潜在埋め込みベクトルを含む。デコーダシステム 150は、エ

ンコーダシステム 160 と同じ潜在埋め込みベクトルにアクセスできるため、離散潜在

表現 122は、潜在埋め込みベクトル自体を含む必要はなく、代わりに、デコーダシステ

ム 150に知られている（すなわち解決される）潜在埋め込みベクトルの識別子を含む。 

 

デコーダニューラルネットワーク 170 は、デコーダ入力 162 を処理して、パラメー

タセット（デコーダネットワークパラメータ）に従って入力データ項目 102 の再構成

172を生成するように訓練されている。 

 

デコーダニューラルネットワークがデコーダ入力から高品質の再構成を生成できる

ようにするために、トレーニングシステム 190は、エンコーダニューラルネットワーク

110 とデコーダニューラルネットワーク 170 を共同でトレーニングして、エンコーダ 

ネットワークパラメータとデコーダネットワークパラメータのトレーニング値を決定

する。また、メモリ 130（および 152）内の潜在埋め込みベクトルを調整して、潜在埋

め込みベクトルが入力データ項目の特徴を効果的に表現できるようにする。 

 

共同トレーニングの後、システム 100は、より強力なエンコーダニューラルネットワ

ークを採用することができ、システム 150は、トレーニングで使用されたネットワーク

よりも強力なデコーダニューラルネットワークを採用して、推論時のシステムのパフォ

ーマンスを向上させることができる。 

 

 図 1B は、入力データ項目 102 が画像である場合のシステム 100 および 150 の動作

の一例を示す。 
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図 1Bの例では、システム 100は、入力データ項目（画像）102を受信し、入力画像

の再構成 172 を出力として生成する。エンコーダニューラルネットワーク 110 は、入

力画像を処理してエンコーダ出力 112を生成する。図 1Bに示すように、エンコーダ出

力 112 は、２次元特徴マップ内の各空間位置に対するそれぞれの D 次元ベクトルであ

り、各空間位置はそれぞれの潜在変数に対応する。したがって、エンコーダ出力 112は、

複数の潜在変数のそれぞれについて、それぞれのエンコードされたベクトルを含む。 

 

次に、システム 100 は、エンコーダ出力 112 およびメモリ 130 に格納された潜在埋

め込みベクトルのセットを使用して離散潜在表現 122 を生成する。特に、図 1B の例

では、メモリ 130は、Ｋ個の潜在埋め込みベクトル e1から eKを格納する。 

 

潜在表現 122 を生成するために、システム 100 は、潜在変数のそれぞれについて、

潜在変数のエンコードされたベクトルに最も近いＫ個の潜在埋め込みベクトルの潜在

埋め込みベクトルを、例えば最近傍ルックアップを使用して識別する。 

 

次いで、システム 100は、潜在変数のそれぞれについて、潜在変数のエンコードされ

たベクトルに最も近い潜在埋め込みベクトルを識別する潜在表現 122 を生成する。図

1Bに示すように、第１の空間位置に対応する潜在変数の場合、表現 122は潜在埋め込

みベクトル e1 を識別し、第２の空間位置に対応する潜在変数の場合、表現は潜在埋め

込みベクトル e53を識別する。 
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次に、システム 150 は、潜在埋め込みベクトルおよび潜在表現 122 を使用してデコ

ーダ入力 162 を生成する。システム 150 は、デコーダ入力 162 を、複数の空間位置の

それぞれにＤ次元ベクトルを有する三次元特徴マップとして生成する。任意の所与の空

間位置におけるＤ次元ベクトルは、潜在表現 122 内の対応する潜在変数について識別

された潜在埋め込みベクトルである。したがって、デコーダ入力 162は、第１の空間位

置に潜在埋め込みベクトル e1を含み、第２の空間位置に潜在埋め込みベクトル e53を

含む。 

 

次に、システム 150 は、デコーダニューラルネットワーク 170 を使用してデコーダ

入力 162 を処理し、入力データ項目 102 の再構成 172、すなわち潜在表現 122 に基づ

く入力の推定値である入力画像と同じサイズの画像を生成する。 

 

図 1B の例が、エンコーダ 110 およびデコーダ 150 のトレーニング中に生成される

再構成を示す場合、トレーニングシステム 190は、エンコーダネットワークパラメータ

の値を更新するために勾配をエンコーダに逆伝播する必要がある。トレーニングシステ

ム 190 は、エンコーダネットワークパラメータを更新できるようにするために、勾配

192をデコーダ入力からエンコーダ出力にコピーすることができる。 

 

 

3.クレーム 

 316特許のクレーム 1は以下の通りである。 

1.システムにおいて、 

 潜在的な埋め込みベクトルのセットを格納するためのメモリと、 

1 つまたは複数のコンピュータと、1 つまたは複数のコンピュータによって実行され

ると、1つまたは複数のコンピュータに実行させる命令を格納する 1つまたは複数の記

憶装置とを備え、 

エンコーダニューラルネットワークは以下のように構成され、 

   入力データ項目を受け取り、 

  1つ以上の潜在変数のそれぞれについて、それぞれのエンコードされたベクトル

を含むエンコーダ出力を生成するために、入力データ項目を処理し、 

 サブシステムは以下のように構成され、 

   入力データ項目のエンコーダ出力を得るために、入力データ項目をエンコーダ 

ニューラルネットワークへの入力として提供し、 

   エンコーダ出力から入力データ項目の離散潜在表現を生成し、 

    潜在変数のそれぞれについて、メモリ内の潜在埋め込みベクトルのセットから、
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潜在変数のエンコードされたベクトルに最も近い潜在埋め込みベクトルを決定する。 

 

 

4. 本特許に関連する論文 

 本特許に関する論文“Neural Discrete Representation Learning”1が、DeepMind

の Aaron van den Oord氏らにより公表されている。 

 

 本論文では離散表現を学習するシンプルで強力な生成モデル VQ-VAE が提案されて

いる。VQ-VAEは従来の VAE と以下の点で相違する。エンコーダネットワークは、連

続コードではなく離散コードを出力し、事前確率は静的ではなく学習される。 

 

VQ-VAE は離散潜在表現を学習するために、ベクトル量子化 (VQ) のアイデアを取

り入れている。これにより、モデルは VAE フレームワークで典型的にみられる「事後

崩壊 posterior collapse」（強力な自己回帰デコーダと組み合わせた場合、潜在変数は無

視される）の問題を回避できる。 

 

 

 

 
1 Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu “Neural Discrete 

Representation Learning” arXiv:1711.00937v2 [cs.LG] 30 May 2018 
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上図の上側は VQ-VAE の構成図であり、動作内容は特許欄で説明した通りである。

上図下側は、埋め込みスペースを可視化したものである。エンコーダ z(x) の出力は、

最も近い点 e2 にマッピングされる。勾配 ∇zL (赤) は、エンコーダをプッシュしてそ

の出力を変更する。これにより、次のフォワードパスで構成が変更される。 

 

 上記左図は、 ImageNet 128x128x3の画像、右図は 32x32x1 潜在空間、K=512 の 

VQ-VAE からの再構成である。なお、K は離散潜在空間のサイズである。各画像とも

正確に再構成されていることが理解できる。 

 

 

以上 
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